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Abstract—An alternating direction implicit (ADI), scheme
for the wide-angle finite-difference beam propagation method
(FD-BPM) based on the wide angled Pade multistep method is
presented. The scheme incorporates an iterative technique for cor-
rection of the operator splitting error. The resulting equations are
efficiently solved by the Thomas algorithm for tri-diagonal band
matrices. The dispersion characteristics, accuracy and stability of
the scheme is verified analytically and numerically for the cases of
a plane wave propagating at fixed angle to the assumed propaga-
tion direction of the algorithm and the three dimensional angled
propagation of a Gaussian beam. The computational requirements
of the method are assessed against a standard wide-angle Pade
multistep method that uses direct and iterative sparse matrix
solvers.

Index Terms—Finite-difference methods, integrated optics, Pade
approximants, wide-angle beam propagation.

I. INTRODUCTION

T HE finite-difference beam propagation method
(FD-BPM) is a well established technique for mod-

eling optical and photonics devices in both frequency and time
domains [1]. The complexity of modern optical and photonics
devices has substantially increased over the last decade, with
high index contrast waveguides desirable for high density inte-
gration of optical devices and circuits. Many modern photonic
devices and components such as arrayed waveguide gratings
(AWGs) require the modeling of vectorial fields, wide angled
propagation, reflections and/or bi-directional propagation in
three spatial dimensions. This substantially increases both
the complexity and the computational requirements of the
FD-BPM [2].

A well-established approach for modeling wide-angle propa-
gation in the FD-BPM is by introducing Pade approximants for
the transverse operator and a multistep evaluation method [3].
However, in the case of three-dimensional (3D) simulations this
method results in huge sparse matrices that are solved by either
direct matrix solvers or faster iterative indirect solvers like the
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bi-conjugate gradient stabilized method [4]. Indirect solvers re-
quire an appropriate sparse matrix preconditioner, and conver-
gence is not guaranteed in the case of wide-angled structures.

Presently, two different approaches are used to reduce the
computational requirements of the 3D FD-BPM. The three-level
schemes like Du-Fort Frankel (DFF), [5], enable larger step
sizes but have conditional stability. Alternatively, a fast implicit
solver like the alternating direction implicit (ADI) scheme re-
sults in a splitting of the differential operator into two direc-
tional components, substantially reducing the matrix problem
size and increasing the computational speed of the method. The
major drawback of the scheme is that the actual splitting of the
operator introduces a zeroth order splitting error term that can be
of the order of the Pade approximation itself. Reduction of the
splitting error term to the order, where is the longi-
tudinal step size, has been done by implementing Pade approxi-
mants and their ADI splitting for only one of the transverse (hor-
izontal) directions [6]. A 3D horizontally wide-angle FD-BPM
was formulated in [7] which used an ADI scheme and a multi-
step method for higher order Pade approximants and made use
of the Douglas scheme in order to increase the order of deriva-
tives approximation to 4. Representation of the Pade approxi-
mants by partial fractions is used in [8], and makes the scheme
amenable to parallel computing techniques. In this approach an
iterative method is proposed in which an adequate pre-condi-
tioner based on a Pade (1,1) expansion is used to decrease the
number of iterations [8]. An alternative approach to model wide
angled propagation using ADI splitting, reported in [9]–[11],
also increases the computational speed of the ADI method but
limits the wide angled nature to a Pade (1,1) approximation.

In this paper a new iterative ADI scheme for wide-angle
wave propagation based on Pade approximants and a multistep
method is proposed. This approach results in tridiagonal ma-
trices that can be easily solved using the Thomas algorithm.
An iterative technique is used to correct for the operator split-
ting error by introducing adequate polynomials. The paper is
organized as follows: Section II outlines the theory behind the
standard wide angled BPM method based on the Pade multistep
method [3] and then proceeds with the implementation of the
multistep method within the ADI method and the correction
of the splitting error. Section III derives the dispersion char-
acteristic of the proposed ADI method for the case of a plane
wave. Section IV-A presents results for plane wave disper-
sion, and analyses the accuracy and stability requirements of
the wide-angled ADI multistep method by comparing results
with analytical ones and with those obtained using a standard
wide-angled FD-BPM, [3]. Section IV-B presents results for
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the case of the propagation of an angled Gaussian beam,
and compares them against analytical ones presented in [10],
[11]. Finally, the computational requirements of the proposed
methodology are compared against those for a wide-angled
multistep FD-BPM method [3] that uses either direct or iterative
sparse matrix solvers.

II. THEORY

In this section the conventional multistep method using Pade
approximants is reviewed, followed by the ADI formulation
based on the multistep method and the correction of the splitting
error. The methodology is developed for the 3D semi-vectorial
TE polarization.

The 3D semi-vectorial wave equation is [12]

(1)

where denotes the (horizontal) electric field component,
z is the propagation direction, is a transverse operator of the
form

(2)

and and are the dielectric constant and the free space
wavenumber, respectively.

After factorization of (1)

the forward propagating waves are chosen

Rewriting the last equation for the slowly-varying field ampli-
tude of the field E, namely , we obtain

where is the reference propagation constant. The reference
propagation constant can be either chosen as a propagation con-
stant along the axis (as the uniform media one or the effective
index of the fundamental mode) or can be calculated in each
propagation step as a Rayleigh quotient [13], shown in the equa-
tion at the bottom of the page. Introducing this new notation, the
following equation can be derived:

from which one can see the operator T corresponds to the oper-
ator in [12].

Further, Pade approximants are used to represent the resulting
square root of the transverse operator. The expressions obtained
are identical to those presented in [12] for the corresponding op-
erator P. After using the Crank-Nicolson scheme to obtain an
equivalent finite-difference equation, the field at the next com-
putational step is presented by a ratio of polynomials of the
transverse operator

(3)

where the coefficients and are uniquely determined for any
choice of the order N. The polynomials of in (3) can be fac-
torized to be presented as

(4)

where the relationship between and coefficients can
be found numerically or analytically from the standard polyno-
mial factorization [14]; the asterisk at and denotes complex
conjugation.

Using higher order Pade approximants (such as 3,3) causes
the appearance of poles in the rational polynomials, giving the
potential for instability. In order to avoid it a common technique
of “rotating” the Pade approximants in the complex plane [15]
was implemented as an option for higher orders of Pade schemes

resulting in the corresponding wave equation

Since the further derivations can still be implemented in a
straightforward way, we do not make further reference to the
polynomial rotation in the complex plane in the theory below.

Further, the multistep approach similar to that presented in
[3] is employed

(5)

where denotes the th fractional sub-step. Equation (4) can
be solved for each partial step using a direct matrix solver [16] or
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an iterative bi-conjugate gradient technique [4]. The (4), (5) rep-
resent the Hadley’s wide-angle technique [3], referred to below
as “standard WA FD-BPM.” In the case of complex 3D struc-
tures (5) results in very large sparse matrices for which direct so-
lution is computationally heavy and iterative methods are often
ill-preconditioned.

In this paper, the alternating direction implicit algorithm and
a conventional second order Crank-Nicolson scheme have been
implemented to fulfill the calculation of the fields on partial
steps described by (5) and splitting the operator as

(6)

where the operators and are defined as

Substituting (6) into (5) results in an intermediate th step as

(7)

The splitting of the operator introduces errors and
in the numerator and denominator of (7), respec-

tively. The coefficients determine the splitting error which is
equivalent to for the paraxial case and further depends
on the factorization for the higher order Pade approximants.
Thus the actual error may diminish the accuracy of the Pade ap-
proximation itself. To decrease the error, correction terms based
on the error terms and are introduced into
the intermediate step as

(8)

However, mixing of the operators and in the denomi-
nator prohibits the use of Thomas’ algorithm. In order to over-
come this problem, an iterative approach, using the known field
as the first approximation is suggested below. By solving (8) it-
eratively the result can be calculated as

(9)

where the coefficients are conveniently
given as in (10), shown at the bottom of the page. The itera-
tive finite-difference scheme presented by (9), (10) combines
the split left hand part, allowing use of the Thomas algorithm,
and an un-split right hand part, which suggests the use of dif-
ferent schemes recalled in [17], such as Safronov’s scheme, or
variations of the Douglas and Gunn’s scheme.

In this work, the correction term is included in one of the ADI
half steps, which immediately introduces a new splitting error
(see (11) at the bottom of the page).

To further correct the error, we introduce the polynomial
at each intermediate step to cancel the error, shown in (12)
at the bottom of the page, where the polynomial has the form

with

(13)

In order to ensure the order of error introduced by the polyno-
mials is smaller than that of the iteration technique, the order of
the polynomials chosen has to be higher than the number of the
iterations itself. As one can see from (11) and (12), the iterations
will be done only in one of the half steps of the ADI scheme.
The polynomial calculations do not compromise the computa-
tional efficiency of the ADI method, as they only require six co-
efficients to be added when multiplying fields. Furthermore the

(10)

(11)

(12)
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coefficients are recalculated only in those regions where there
are refractive index changes.

The introduced ADI scheme described by equations (9,12)
with = 0 (this corresponds to no iteration of the ADI scheme) is
referred further in the text as “ADI WA FD-BPM corrected” and
the same ADI scheme with a few iterations is referred
as “ADI WA FD-BPM corrected and iterated.”

In the vectorial case, the cross term derivatives of the trans-
verse operator cannot be split. The finite difference representa-
tion of the terms has to be implemented using the previous prop-
agation step field components with its following iterative update
implemented as a part of the last term in (10). Consequently, an
additional term will be introduced into the polynomial as well.

III. DISPERSION ANALYSIS

In this section the dispersion analysis of the new iterative ADI
method based on the Pade multisteps is derived. The analytical
form for the scheme dispersion is obtained when the field is
substituted by the monochromatic plane wave of the form

(14)

where is the refractive index, and are
integers. If the plane wave is propagating at an angle with
respect to the -axis and angle with respect to the -axis, the
projections of the vector on to the and axes are

(15)

Substituting (14) into (4) and using

the propagation constant , can be found as

(16)

where is found here as , and the transverse operator
is found as [19]

(17)

The iterative ADI algorithm, suggested in this paper, results in
the following dispersion relation:

(18)

where describes the th Pade approximation partial step
of (12).

The dispersion analysis described here incorporates the finite
difference representation of the derivative in propagation direc-
tion similarly to that presented in [19]. It would not be enough to
analyze the dispersion characteristics of the transverse operator
itself, as it was done in [3], as it would not allow us to assess the
influence of the operator splitting, which is performed on the
resulting finite difference operator. However, in our analysis we
will occasionally use the representation of transverse operator
corresponding to as in [3]:
and it is noted that the operator P of [3] corresponds to .

IV. RESULTS

In this section, the plane wave dispersion of the new wide an-
gled ADI scheme is compared with analytical values obtained
from the analysis presented in Section III and also with the dis-
persion of the standard wide-angle BPM method of [12]. The
stability issues of the proposed method are also discussed. Sec-
ondly, the dispersion of a Gaussian beam propagating in a uni-
form medium is analyzed. Finally, the computational require-
ments of the new BPM method are compared to those of [3], [12]
that use either direct [16] or indirect [4] sparse matrix solvers.
In all simulations a perfectly matched layer is implemented to
model open boundaries [18]. For clarity, the analysis is limited
to the first three orders of the Pade approximants.

A. Dispersion of a Plane Wave

In this section the dispersion characteristic given by (16),
(18) is presented. Using the formulae of Section III the stability
of the proposed multistep wide-angled ADI FD-BPM iterative
scheme is compared to that of the standard multistep wide-an-
gled BPM of [12]. Angular plane wave propagation in an homo-
geneous medium is considered and the semi-vectorial method
introduced reduces in this case to the scalar one used by Hadley
[12], allowing direct comparison of phase error calculated by
two methods.

Similarly to [12], Fig. 1 shows the phase error obtained
with variety propagators relative to the exact value of

, where is the propagation angle. The
solid lines of Fig. 1(a) correspond to the
representation of the operator T resulting in the same expres-
sions and graphs as presented in [12], but shown here on a
logarithmic scale. It is observed that the angles when the phase
error is under 3.e-3 correspond to 5, 27 and 65 degrees for
Paraxial, Pade(1,1) ,and Pade(3,3) approximants, respectively.
The phase error of 3.e-3 mentioned corresponds to that which
can reasonably be distinguished from zero by eye on the linear
graph presented in [12].

However, for finite values of the accuracy of approx-
imation itself can be undermined causing the errors similar to
those of lower order approximations for smaller angles, as one
can see from the dotted and dashed lines of Fig. 1(a).

For this analysis, the plane wave is assumed to propagate in
a uniform medium of refractive index at an operating
wavelength of 1.15 m. Unless specified additionally, the trans-
verse discretization employed is m and
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Fig. 1. Phase Error incurred by the use of the operators shown for propagation
of a plane wave at various angles with respect to the z axis: solid line ��� �
���� � ��, dashed lines: �� � �� � ����m, dotted lines: �� � �� �
���	�m. (a) error incurred purely due to transverse operator expansion by Pade
approximants, without the finite difference representation of the derivative in
propagation direction (dispersion analysis similar to [12]); (b) error when using
dispersion analysis described in Section III.

the longitudinal step size is m. The plane wave is
assumed to propagate at an angle with respect to the propaga-
tion axis.

Similar results, calculated for dispersion characteristics
taking into account the finite difference representation of the
propagation direction derivative (16)–(18) are presented in
Fig. 1(b). As one can see the discretization of the derivative in
the propagation direction which was not investigated in [12] can
affect the accuracy of the different orders of approximations:
the curves are shifted to higher angles compared to the disper-
sion characteristics of the Fig. 1(a), but the influence of the
transverse operator discretization is similar, often undermining
the accuracy of approximation itself. Furthermore, the same
effect is observed when varying the value of the longitudinal
step—the effect that may limit the size of the longitudinal step
to be used in ordinary WA FDM to achieve higher accuracy,
corresponding to the Pade approximation itself.

In the following results we will concentrate on analysis of
propagation constant itself rather than the phase error. From

Fig. 2. Numerical dispersion characteristics: (a) (1)—paraxial FD-BPM,
(2)—paraxial ADI FD-BPM, (3)—Pade(1,1) conventional ADI, (4)—Pade(1,1)
ADI WA FD-BPM corrected (not iterated), (5)—Pade(1,1) standard WA
FD-BPM, (6)—Pade(3,3) ADI WA FD-BPM corrected and iterated to con-
verge; (7)—Pade(3,3) standard WA FD-BPM; (b) standard WA FD-BPM
Pade(3,3) and ADI WA FD-BPM corrected and iterated Pade(3,3) with 2 and 4
iterations. Dashed lines here correspond to � � � ��� .

(16), (18) the dependence of the propagation constant on the
propagation angle is shown in Fig. 2(a) and (b) for different
Pade orders. Curves 1 and 2 denote the paraxial FD-BPM
method and paraxial ADI FD-BPM (namely Pade(1,0)), results
respectively. It can be seen that they are almost identical as the
splitting error is proportional to the square of the longitudinal
step, . For the case of a Pade(1,1) approximation the result
obtained using the standard FD-BPM method is given by curve
5, [12]. Curves 3 and 4 denote the Pade(1,1) ADI schemes
without and with the splitting error correction respectively.
It can be seen that when the correction is implemented the
ADI scheme gives more accurate results than its uncorrected
alternative, i.e., results of curve 4 are much closer to those
of curve 5. This improvement is obtained without increasing
the computational time or memory consumption over those of
the conventional ADI scheme. Curves 6 and 7 show results
for a multistep Pade (3,3) approximation, calculated using
ADI corrected by a polynomial of third order implementing 2
iterations and the method of [12], respectively. Once again the
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Fig. 3. Dissipative dispersion characteristics �� � �����m, ������ � 	�	
�m, dashed line corresponds to the standard WA FD-BPM): (a) (1)—Pade(1,1)
using ADI WA FD-BPM corrected; (2)—Pade(1,1) using ADI WA FD-BPM corrected and iterated to convergence (5 and 8 iterations); (3)—Pade(2,2) using
ADI WA FD-BPM corrected and iterated to convergence; (4)—Pade(3,3) using ADI WA FD-BPM corrected and iterated to convergence; �� � 	�	
�m.
(b) (1)—Pade(1,1) using ADI WA FD-BPM corrected, (3)—and converged (5 and 8 iterations); (2)—Pade(2,2) using ADI WA FD-BPM corrected, (4)—and con-
verged (5 and 8 iterations); (5)—Pade(3,3) using ADI WA FD-BPM corrected and iterated to converge (5 and 8 iterations); � � �	 . (c) (1)—Pade(3,3) using
ADI WA FD-BPM corrected and iterated (3 iterations); (2)—Pade(3,3) using ADI WA FD-BPM corrected and iterated to converge (5 and 8 iterations) � � 
	 .

results are in good agreement and, as expected, they approach
the analytical results (dashed curve on the graph) for wider
propagation angle as the Pade order is increased.

As one can see from the results for first order Pade approxi-
mant the corrected ADI WA FD-BPM is a sufficient approxima-
tion of the standard one, and no iterative correction is needed.
The same is found to be true for the second order of Pade ap-
proximant as well. Fig. 2(b) compares dispersion results for the
Pade(3,3) approximant in more detail. In this figure results ob-
tained using the corrected multistep Pade(3,3) ADI with 2 and
4 iterations are compared to those obtained using the standard
Pade(3,3) scheme of [12]. The comparison illustrates a gen-
eral observation that for higher order Pade approximants (here,
Pade (3,3)) the corrected multistep ADI scheme requires more
iterations to reach the accuracy of the standard Crank-Nicolson
FD-BPM scheme of [12].

The results of the numerical dispersion calculations pre-
sented in the Fig. 2 demonstrate the ability to use ADI-like
schemes for higher order Pade approximants achieving similar
accuracy in the wide-angle field representation as the standard
WA FD-BPM. However, the exploitation of the ADI-like
schemes greatly reduces the computational resource as will be

discussed in detail in Section IV-C. The angular limitations
of Pade approximants are not straightforwardly seen from the
graph, however can be easily checked while calculating the
phase error, as demonstrated in Fig. 1 and in our previous
results [21].

Fig. 3 addresses stability issues involved in the multistep ADI
schemes by analyzing the imaginary part of the propagation
constant, which is responsible for the numerical loss or gain and
thus may affect the stability of the scheme. Our results will be
demonstrated on the example of Pade (1,1) and Pade(3,3) ap-
proximants. The Pade(1,1) results are presented for the ADI WA
FD-BPM corrected but not iterated scheme. As already shown,
this scheme does not need any iterations to improve the disper-
sion characteristics. The Pade(3,3) results are used to represent
the common behavior of the higher order Pade approximation
schemes. Fig. 3(a) and (b) compare the Pade(1,1), Pade(2,2) and
Pade(3,3) schemes, whilst the Fig. 3(c) concentrates on the com-
parison of Pade(3,3) schemes with different number of iterations
involved.

Fig. 3(a) shows how the imaginary part of varies with the
angle of propagation. While, as shown before [12], the stan-
dard WA FD-BPM does not introduce any numerical loss or
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gain to the calculation (dashed line), the ADI WA FD-BPM cor-
rected schemes may bring numerical loss which increases with
the angle of propagation. For the particular case of Fig. 2(a) the
numerical loss of the Pade(1,1) corrected scheme (curve 1) is
higher than that for the Pade(3,3) one (curve 4).

The numerical loss would not cause any instability of the
scheme (only additional dissipation) and in any case appears
for the higher angles for which the current Pade approxima-
tions are not sufficient. For the ADI WA FD-BPM corrected and
converged schemes of Pade(1,1) and Pade(2,2), the solution is
unstable.

Fig. 3(b) shows the imaginary part of the propagation con-
stant as a function of the longitudinal step size for a particular
case of a plane wave propagating at degrees, mesh size

m and operating wavelength m.
As one can see the numerical loss observed for the Pade(1,1)
and Pade(2,2) schemes remarkably increases with the step size.
This effect may in practice limit the step size that can be used
with a Pade(1,1) scheme so as to minimize the numerical loss.
For example, the losses for the Pade(1,1) scheme
( m) correspond to 0.004 dB/mm. Interestingly, the
limiting factor for the longitudinal step in the Pade(3,3) scheme
is not the growth of the numerical loss but rather the fact that
for a particular value of the imaginary value of the curve
becomes positive. This results in numerical gain, indicative of
the scheme’s instability. This limits the size of the longitudinal
step Pade(3,3) that can be chosen. As one can see from the
curve 3 and 4 of Fig. 3(b), converged schemes for Pade(1,1) and
Pade(2,2) are unstable for any size of longitudinal step, and can
not be used. However the corrected ADI WA FD-BPM scheme
for Pade(1,1) gives good approximation as can be seen from re-
sults shown in Fig. 2(a).

Fig. 3(c) further investigates this behavior for the highest
possible angle of 90 and compares converged and non-con-
verged results for the Pade(3,3) ADI WA FD BPM corrected
and iterated methods. The simulation parameters are

m and operating wavelength m, as for
Fig. 3(b). For higher angles of propagation the numerical loss or
gain of the converged schemes (curve 2) is higher. However, ap-
propriate choice of can ensure stability. The non-converged
Pade(3,3) scheme (curve 1) remains a dissipative scheme for any
longitudinal step size.

For a converged and iterated ADI WA FD-BPM Pade(3,3)
scheme, the loss for propagation at 60 will be about
0.005 dB/mm, and for propagation at 30 about

dB/mm when using a longitudinal step size of 0.02 m.
These errors are sufficiently small to have little impact on the
physical interpretation of the phenomena described.

The curves in Fig. 3 also show that there is an optimal
for which the scheme has neither loss nor gain, implying that
the introduced methodology has conditional stability. The con-
ditions of the stability depend on the refractive index of the
media, and in the case of waveguides it would depend on the
effective refractive index found using say a Rayleigh quotient.
This may suggest using an adaptive longitudinal step when sim-
ulating waveguides. Whilst we have not yet rigorously investi-
gated the influence of refractive index contrast on stability and
error, our preliminary investigations for a high index contrast

Fig. 4. Propagation step values corresponding to zero loss propagation de-
scribed by converged ADI Pade(3,3) scheme.

angled rectangular waveguide [20] did not demonstrate any ad-
ditional instabilities.

Fig. 4 shows the value of the longitudinal step size obtained
for zero numerical loss or gain for different angles of field prop-
agation. It can be seen that the zero loss or gain criterion re-
quires smaller longitudinal step size for higher angles of field
propagation.

It can be concluded from Figs. 2, 3(c), and 4 that the
new algorithm requires longitudinal step size of the order of
0.03 m-0.1 m. This is also an appropriate choice for many
applications.

B. Numerical Simulations of Angled Gaussian Beam

In this section numerical results for the full 3D propagation of
an angled Gaussian beam in an homogeneous medium obtained
using the proposed multistep ADI method are compared with
analytical results and those presented in [10], [11].

The initial Gaussian beam is located at the center of the co-
ordinate system, (0, 0) of the computational window with
and varying from m to 55 m, and varying from
0 m to 60 m. The transverse mesh size is m,

m and the longitudinal step size is m.
According to our estimations demonstrated on Fig. 3, the choice
of the longitudinal step will result in a lossy scheme with numer-
ical loss approximately dB at m; this corre-
sponds to a power loss of 10 which is deemed acceptable ac-
curacy for this numerical experiment. The initial Gaussian beam
width is 3 m, and the angle of the beam propagation is 45 with
respect to both the transverse and axes, and 30 with respect
to the longitudinal -axis. The operating wavelength is 0.85 m.
Fig. 5 shows the initial and the output field distribution of the
Gaussian beam across the transverse - plane. The output field
obtained using the ADI Pade(1,1) multistep method with error
correction presented in this paper is compared with the analyt-
ical prediction. It can be seen that the analytical and multistep
ADI results are in very good agreement. Furthermore, it can be
observed that the coincidence of the output Gaussian beams cal-
culated by the corrected Pade(1,1) scheme and the analytical
solution is better than those shown for the Hoekstra scheme in
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Fig. 5. Propagation of a Gaussian beam, showing the initial field, the analytic
output field, and the output field calculated using a Pade(1,1) ADI WA FD-BPM
corrected scheme. The results presented are along the diagonal � � �.

[10], [11]. Effectively, the proposed scheme requires the same
number of ADI half steps as the Hoekstra scheme, but has an
improved dispersion characteristic.

A comparison of Fig. 5 to the identical plot presented in [10]
(calculated using the same parameters) shows that the present
Pade(1,1) scheme gives results that are much closer to the ana-
lytical results. This is as expected since the dispersion curve of
the Hoekstra scheme used in [10], curve 3 in Fig. 3(a), is poorer
than that of curve 4 for the Pade(1,1) ADI WA FD-BPM cor-
rected scheme.

To systematically assess the accuracy of the proposed
methodology, the shift of the Gaussian peak, , in the -
plane and the standard deviation of the Gaussian beam, , are
observed and compared with the analytical values which are
found as

(19)

and

(20)

where is the intensity of the Gaussian beam and is
.

Fig. 6 shows the results for (a) the Gaussian peak and (b)
the standard deviation of the Gaussian beam shift as a func-
tion of the angle . For these results the mesh size used is

m, m. The operating wavelength
is 0.85 m and varies from 0 m to 50 m. For this, and sub-
sequent examples a coarse transverse grid size is chosen. This
is principally because in order to compare the efficacy of the
new technique with that of a standard WA FD-BPM we will
need to use a coarser mesh size to make the calculations by
the standard method tractable. However, as already shown our
higher order schemes can provide better wide-angle approxi-
mation than those presented in [9], [10] and for that reason the
use of fine grid is less important. The initial Gaussian beam

Fig. 6. (a) The shift of the peak of the Gaussian beam and (b) the standard devi-
ation of the Gaussian beam. Results obtained with ADI WA FD-BPM corrected
for paraxial case, Pade(1,1) and Pade(3,3) (solid lines) are compared against the
analytical ones and ordinary multistep WA FDM (dot symbols).

width is 2 m and the beam is angled with respect to the
and axes at an angle of 45 . The results obtained using the
proposed methodology are compared with the analytical values
and the paraxial ADI scheme. The longitudinal step size is de-
termined by the conditional stability of the higher order Pade
ADI schemes (the longitudinal step must be under 0.029 m
for Pade(3,3) scheme) and the numerical loss of the Pade(1,1)
scheme discussed in the descriptions of results in Figs. 3 and
5. Correspondingly, the longitudinal steps for the experiment
were chosen to be m for paraxial ADI,

m for Pade(1,1) and m for Pade(3,3).
Fig. 6(a) shows that the higher order Pade approximants im-
prove the accuracy of wide angled simulations and better predict
the Gaussian peak shift. The results are similar to the ordinary
multistep WA FD-BPM.

Fig. 6(b) shows that the standard deviation is a much more
sensitive measure of the wide angular nature of the field and
requires higher Pade order to achieve good agreement with an-
alytical values. This is because the widening of the pulse is de-
scribed by the field components propagating at higher angles to
the axis than the beam itself, requiring higher Pade order.
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TABLE I
MEMORY AND TIME RESOURCES, REQUIRED FOR SIMULATIONS OF HUNDRED

STEPS PROPAGATION FOR PADE(1,1) APPROXIMATION (N DESCRIBES THE

NUMBER OF TRANSVERSAL STEPS IN BOTH X AND Y DIRECTIONS)

C. Computational Requirements of the ADI Method Based on
Pade Multisteps With Error Correction

This section assesses the computational memory and time
requirements of 3D wide-angled multistep ADI technique
based on Pade approximants against the standard wide-angled
BPM multistep method using the direct method [14] (labeled
as UMFPack) and the biconjugate gradient stabilized iterative
technique [4] (labeled as Bi-CSTAB) for matrix solving. The
simulation problem chosen is the Gaussian beam propagation
given in Fig. 6.

Table I demonstrates the comparison of these techniques for
Pade(1,1) approximation and for different values of the mesh
size where The iterative ADI and Bi-CSTAB
techniques both demonstrate considerable improvement in the
computation efficiency in comparison to the UMFPackage.

Furthermore, the iterative ADI technique requires less
memory and is much faster when compared to the Bi-CSTAB
technique.

V. CONCLUSION

A wide-angle ADI FD-BPM algorithm based on a Pade mul-
tistep method incorporating an iterative procedure to correct the
operator splitting error is presented and assessed. The numer-
ical dispersion characteristics of the proposed ADI scheme is
derived and assessed for the case of plane wave propagation.
It is shown that even without the iterative correction procedure
the accuracy of the Pade (1,1) ADI with error correction is very
close to that of original BPM based on multistep method [12].
The ADI based on higher order Pade approximants requires a
few iterations for error correction to improve the accuracy. Un-
like the standard WA FD-BPM, the stability of the algorithm is
found to be conditional on the longitudinal step size. The condi-
tional stability requires smaller longitudinal steps for higher an-
gles of propagation. The choice of the longitudinal step size can
also be made to satisfy the zero dispersion criteria. Furthermore,
numerical simulations of the angled Gaussian beam propaga-
tion were performed and results compared against the analytical
ones and those obtained under the paraxial approximation. As
expected, the ADI WA FD-BPM corrected and iterated scheme
improved the accuracy compared to the paraxial ADI scheme,
converging to the results of standard WA FD-BPM. Finally, the
computational requirements of the proposed methodology are

compared against original Pade multistep method with either it-
erative BiConjugate Gradient or direct matrix solvers. The pro-
posed iterative technique can significantly reduce computational
requirements for the 3D simulations.
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