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On shape optimisation of optical waveguides using Inverse Problem
techniques.

by
Thomas Felici & Heinz Engl.

1. Introduction
Optical waveguides are the basis of the optoelectonics and telecommunications industry. The
best known example of an optical waveguide is the optical fibre, which has already replaced the
telephone copper wire as the means of data transportation on all modern telecommunication
networks. Less familiar, but just as important, are the optical waveguide components that now
make up the optoelectronic systems which manipulate, filter, and dispatch incoming optical
signals. These are usually fabricated via an etching process, and can have complicated structural
features on the order of 0.25µm. Such “diffractive optics” devices have great advantages in terms
of size and weight, and can often be designed to perform functions unattainable with traditional
optical elements. For example, structures with spatially periodic features (diffraction gratings)
are used as spectral filters, polarizers, waveguide couplers, etc. The development and application
of this new technology increasingly relies on accurate mathematical models and numerical
calculations both for the prediction of device behaviour and for the determination of “optimal”
device designs. In contrast to the case of traditional optical structures, geometrical optics is
generally not sufficiently accurate for these diffractive devices. The computational problem is
much more challenging, requiring the solution of a full partial differential equation model.
A taper is a generic kind of optical waveguide with a cross-section that varies continuously along
its length z. Tapers are used to couple light from a waveguide into a another waveguide with
different cross sectional profile. It is well known that for large enough lengths, the light may be
transmitted without power loss into the output waveguide. This is called the adiabatic regime of a
taper. As the length decreases, the power loss increases. The aim of this study is to develop a
formulation to minimise the taper length while keeping an acceptably low loss. This is achieved
by varying the taper profile.
We start by setting out the direct problem for the propagation of the EM field in a generic
waveguide, and define the optimisation problem. We then proceed to show how this can be in
some sense ill posed. We then derive a modal formulation of the problem, and establish the
evolution equations for the modal excitations in the taper. This is a convenient formulation if we
want to determine the power excited in the fundamental mode of the exit waveguide, as this
corresponds to the first coefficient of the modal expansion. The discrete optimisation problem is
then derived by considering the taper as a sequence of uniform cross sections. The field in each
section is expressed as an expansion of local modes, whose coefficients are determined by the
field continuity condition across each sub section. We show how numerically the above
mentioned ill posedness slows down the convergence of a classical optimisation algorithm with
increasing discretisation refinement of the original structure. The ill posedness of the problem
suggests the use of some sort of regularisation: we proceed to show how the power maximisation
problem can be formulated as a non linear inverse problem, which can then be solved using
established inverse problem regularisation techniques [5]. Numerical results presented here show
that this new approach can lead to robust optimisation algorithms less sensitive to large
discretisation refinements.
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For related work in shape optimisation of other types of optical devices, see [1] and [2].

2. Formulation of 2d direct problem.
For simplicity and clarity we restrict ourselves to the 2D case, although the entire analysis is
directly applicable to the general 3D problems.
The source free Maxwell’s equations in a continuous medium with varying linear permettivity ε
are:
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in 2-d, we assume that 0/ =∂∂ y . Then have a consistent solution with Hy=Ex=Ez=0 (the TE
field) with:
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where we have assumed a time harmonic dependency iwte− . This leads to the Helmholtz equation
for Ey:

022 =+∆ yy EnkE  with k=00εµω and 0
2 εε=n .

Another set of solution exists with Ey=Hx=Hz=0 (the TM field), leading to a slightly modified
equation, but we shall only deal with the TE modes here. The analysis is also valid in three
dimensions if we assume a weakly guiding approximation, which essentially states that the
variation of the refractive index throughout the region is small. For more details on this, as well
as the treatment of the general 3D case, see [3].
We now formulate the propagation problem for the field in a generic waveguide.

From now on we write U instead of Ey. We assume that on the sides we have “hard walls”
(U=0). This physically means that the field is reflected back into the region. In practice this is
not a problem if we are seeking guided field solutions, which by definition are bound to the
waveguide code and decrease exponentially on the outside. The field is then given by:
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(4) 0| =ΓU
where we have set k=1 wlog.
Now, we need conditions at ∞± . First assume we have an input field from LHS coming from
∞− . This field UI satisfies (3),(4) in LΩ . We need to express the fact that the scattered field U-

UI is outward travelling on both sides. We can do this in terms of a modal expansion in  LΩ , RΩ .
So consider problem of finding eigen modes in these end regions.
In LΩ : 02 =+∆ UnU . Assume ( ) ziexUzxU β)(~, = . Then
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This is an eigen-problem. The  “hard wall” boundary condition ensures that we have discrete
eigen-modes ( ){ }K,2,1;,~ =± kU kk β . Therefore:
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An identical expression is true for the RHS.
Note, with appropriate reordering, following property holds:
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In (5), set 0>kβ  if kβ is real , kk i ββ =  if kβ is imaginary.
Under this notation, an outgoing wave UL (to the LHS) is given by setting 00 >∀=+ kC k .
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An incoming wave UI (from the LHS) is given by setting 00 >∀=− kC k .
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U β     in  LΩ   -this is the radiation condition for the LHS.
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Analogously for the RHS we wave
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incoming wave from the right).
So complete problem is: Find ( )zyxU ,,  s.t.
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k β  are the eigen-modes in LΩ , RΩ respectively.
Note:
1. LΓ , RΓ can be chosen at any position in LΩ , RΩ respectively.
2. Often the incoming wave front UI is just a specific mode of the input waveguide, so that UI is

directly given in terms of its modal coefficients: )1(0;)1(1~, )( >=== kkUU L
kI .

3. Formulation of the optimisation problem.
In general , we are interested in finding the optimal shape (or refractive index distribution) which
in some sense maximises the power transfer of the waveguide. Alternatively we might want to
optimise the shape according to some other physical requirement (e.g. minimising the length)
while keeping the transmitted power loss below a specified threshold.
Often for practical purposes we are interested in the situation where the input field is an
excitation of the fundamental mode of the input waveguide, and we are interested in the power
remaining in the (guided) fundamental mode )(

1
~ RU of the output waveguide. In terms of the modal

expansion (5), this corresponds to the coefficient 2
1C . In terms of the actual fields, this is given

by:
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Now, it is well known that maximum power transfer (P=1) can me achieved as the length of the
taper tends to infinity. This can be seen using modal analysis [3]. It therefore makes sense to
impose the additional constraint of keeping the taper length fixed.

4. Solution of the direct problem.
Due to the boundary conditions that we have imposed, system (6) is most conveniently solved
using local modal expansions. This is a fairly standard technique, and we only give a basic
outline of the method. For more details we refer to [3].
We start with the field equations (6):
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Let zΩ be the 1D cross sectional region at position z along the waveguide regionΩ . Define the
local basis set at each position z ( ){ }1;, ≥kU kk β given by the eigen problem:
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Self adjointness of the operator Lt ensures that this set forms a complete basis set for any
function ( )zf Ω∈C  with 0| =Ω∂ z

f , and the boundary conditions on kU ensure that this set is
discrete. Therefore any function U defined in the regionΩwith 0| =Ω∂ z

U can be expressed as a
unique expansion of this local (orthogonal) basis set:
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Where the coefficients depend (only) on z.
Now, we are interested in a formulation which locally gives a representation of the
electromagnetic field in terms of the forward and backwards local modal EM fields.
For a waveguide with constant cross section, we have [3]:
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We therefore chose our expansion for the function U solution to (6) in terms of the set of
coefficients such that :
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This ensures that the power normalisation is satisfied, and so 2
ka  is the power in each excited

mode.
Using the fact that the derivative of (12)-a wrt z must be identical to (12)-b, and substituting (12)
into (8)-a we deduce that the ka ’s must obey the coupled ODE system:
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The boundary conditions at the beginning ( 0=z ) and end ( Rzz = ) translate as:
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where the kA ’s are the given coefficients corresponding to the LHS input field IU .
(14) can be rewritten as:
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This is the evolution equation for the amplitudes ( )zkγ . Note that:
1. the RHS does not depend upon ( )zkγ , which means that this equation describes the cross-

coupling between modes.
2. In a waveguide with constant cross section, 0=kjr so ( )zkγ  is constant, as expected.

3. An upper bound for the cross-coupling terms is given by: 
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coupling influence tends to be strongest with its immediate neighbours, for which jk ββ −  is
smallest.

4. The coupling can have irregular behaviour at a point where neighbouring β’s approach the
same value. This can lead to some interesting behaviour to be investigated further. For
example, one expects strong mode mixing to happen on a very short length scale.

5. This analysis assumes continuity in the refractive index n(x,z). Jumps can be taken into
account by relating the coefficients kγ at either side of the jump using the field continuity
conditions.

5. Solving numerically the optimisation problem.
Reduction to a discrete optimisation problem is obtained by parametrising the refractive index
profile. The parametrisation chosen here is a discretisation of the continuous shape into a
sequence of N sub sections, each with fixed length and uniform in the z direction. The refractive
index profile in each subsection is then controlled by a finite set of parameters. In this example,
the unknown parameters are the position of the waveguide boundary in each sub section
{w1,w2,…,wN}.
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power in mode 1

power in mode 2

power in mode 3

optimal profile

This piecewise continuous discretisation implies that we impose very weak regularity constraints
on the taper profile. In particular, we are allowing for solutions with profile discontinuities. The
field is calculated via local modal analysis in each sub section. The field expansion coefficients
in each subsection are uniquely determined by the continuity condition at each interface as well
as the initial field excitation on the LHS.

To maximise the resulting objective function P(w1,w2,…,wN) a variable metric optimisation
routine was used [4]. The derivatives required by the method were calculated using finite
differences. The initial shape was chosen to be the linear taper (see above figure) with two
different discretisations N.

6. Physical interpretation of optimal solutions.
 The results, shown in appendices 1, 2, are interesting in their own right, since they contradict
currently held ideas in the optoelectonics community as to what an optimal shape should be for a
device which maximises power preservation in the fundamental mode. Indeed it is generally
believed that the shape should be taper-like, i.e. a smooth transition between the input and output
waveguide cross-sections. It is well known that as the taper length increases, the power excited
in the input fundamental mode will tend to
remain in the local fundamental mode, which of
course is changing along the taper. The
“optimal” shape would then be the one that
somehow maximises this adiabatic behaviour
throughout the waveguide. On the contrary,
these results show that real optimal shapes
seem to be based upon quite a different
underlying mechanism - the resonance between
adjacent modes: as can be seen from the graph,
the beginning of the optimal profile comprises
of regularly spaced “teeth” repeating every
10µm. This periodic variation produces a
discrete coupling such that that the power,
although initially entirely in mode 1,
nevertheless remains throughout this region almost entirely in the first two local modes. After a
middle straight section, the final “bump” just before the end re-injects all the power now in mode
2 back into mode 1. The total power lost from the fundamental mode is 0.5%. This is achieved in
only 80µm, while an equivalent straight taper would have to be 5 times longer before achieving a
comparable efficiency!

wk

n=3.30

n=3.32

x

z
Symmetric upper half of the taper modelled as a sequence of constant sections.
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7. Ill posedness of the optimisation problem.
It is evident on observation of the convergence graphs in appendices 1,2 for the optimiser that
the straight forward optimisation strategy outlined above runs into difficulties for finer
discretisations (appendix 2). The problem gets worse if we further increase the number of
subsections N. This excessive slowdown in convergence rate is due to the ill posed nature of the
optimisation problem itself, in the sense that we now explain.
In fact the above optimisation problem is ill posed in the sense that we can always find an
arbitrarily large variation in the optimal solution, which still gives an arbitrarily close field U. To
see this we do the following: suppose that we have any solution n Suppose we apply a
perturbation 2nδ  to 2n . Then the resulting field U will undergo a change Uδ is given to first
order by perturbing (6):
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it is convenient to re-express (17) in integral form, so we introduce the Green function ( )rr ′,G ,
with ( )zx,=r , ( )zx ′′=′ ,r , defined by:
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The field Uδ is then given in the usual way by evaluating the expression:
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Using the divergence theorem over the domain Ω  we obtain:
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same goes for contribution on RΓ .
Hence have:
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(19) ( ) ( ) ( ) ( )∫
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This can be functionally expressed as a mapping:
( ) ( )( )Ω→Ω 00: CKCK  defined by
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where ( )Ω0C  is the space of all continuous functions over Ω  and ( )( )Ω0CK  its image under K.
This can be viewed as an integral equation for 2nδ for a given Uδ .
It is well known [5] that these equations (Fredholm integral equations of first kind) are ill posed
in the sense that for any admissible Uδ  and its solution 2nδ , for a given arbitrarily small ε  there
exists another function 1

2nδ  for any 2nδ  such that
εδδ <− UnK )( 1

2 .
This observation implies the following:
1. Since the objective functions and constraints in both the above optimisation problems only

depend explicitly (and continuously) on the field U, and not on the refractive index
distribution 2n , small variations in the field imply small variations in the constraint and
objective functions. Hence if 2n is an optimal solution, then we can choose an arbitrarily
different distribution 1

2n which will also minimise the objective, and satisfy the constraints,
to arbitrary precision.

2. Any optimisation scheme which in some way uses the above linearisation to find a local
direction of descent will therefore manifest instabilities if it makes no additional regularity
assumptions on the function search space, i.e. it attempts to search for an optimal solution 2n
in the entire space ( )Ω0C .

3. This physically manifests the fact that the light propagation U is insensitive to variations in
the refractive index profile which are smaller in scale than the propagating “wavelength” of
U.

4. We can recover numerical stability to our optimisation problem by limiting our search space
to a smaller function space, for example we could search for the optimal 2n in the
space ( )Ω1C . Equation (19) would then become a mapping ( ) ( )( )Ω→Ω 11: CKCK  which has
a continuous inverse in ( )Ω0C , due to compactness of ( )Ω0C  in ( )Ω1C , if such an inverse
exists. If this inverse does not exist, we can always consider the generalised inverse. This will
be the basis of the alternative algorithm described in the next chapter.

8. The Inverse Problem approach.
This approach is based on a power conservation property for (6), namely that:
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is conserved along the waveguide. Hence the total input power must be the same as the total
output power on the right plus the reflected power at the input:
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The second sum contains the coefficients of the modal expansion for ( )nzxU R ;,  at the exit of the
taper:

( ) ( )∑
∞

=

=
1

;,
k

R
RkR k

UzanzxU

which are uniquely determined by (14) and (15) for a given refractive index distribution n. (from
(15), the backward coefficients have already been set to zero). It follows that the power
transmitted in the RHS fundamental mode, ( ) 2

1 Rza , is always smaller than 1, and equality is
obtained only when:
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We have therefore re expressed the optimisation problem of minimising )(nP with solving (20),
for the unknown refractive index distribution n. Viewed in this way, the problem is known to be
ill posed, and is very similar in concept to inverse scattering problems [??]. Moreover the
dependency on n ( )nzxU R ;, is non linear, and a solution may not even exist in reality, as there
might not be a shape with finite length which can totally convey all the input power into the RHS
fundamental mode (P=1). Nevertheless this formulation has the advantage that we are taking
into account the values of ( ) ( ),..., 32 RR zaza as well as ( )Rza1 . Although this is not strictly
necessary, as power conservation implies that if ( ) 11 =Rza  then ( ) ( ) 0,..., 32 =RR zaza ,
numerically it should help to drive the coefficients towards these desired values.
The other advantage is that we can leverage techniques used for solving non linear inverse
problems. We now outline a typical approach using a Newton-Raphson like technique.
We rewrite (20) as

( ) 1aa =n
with
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Next Newton step nn δ+ is given by the linearised problem

(21) ( )nn
n n

aaa
1 −=

∂
∂ δ

The expression on the LHS is to be understood as a functional derivative. Note that such a nδ  is
a descent direction for ( )

21aa −n  (easily seen by taking its derivative and using (21)).
After parametrising ( ) { }Nnnnzxn ,,,, 21 L=→ n  the Newton step equation becomes

(22) ( )naan
n
a

1 −=
∂
∂ δ

n
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where the Jacobian 
nn

a
∂
∂  is a (M x N) matrix, M being the last retained mode coefficient.

Note that depending on the choice of N and M we may have an under determined or over
determined system. Clearly the choice of N depends on the degree of refinement we require. The
choice of M is related to the accuracy of the solution to the direct problem: of course, the more
coefficients we keep in (14), the more accurate the solution to the direct problem. The choice of
the number M of these coefficients to include in (20) may seem arbitrary (we may or may not
include all coefficients included in solving the direct problem (14)), but the optimal choice may
well be related to the resolution N [??].
Either way, we are now faced with the problem of choosing the nδ  which “best” satisfies (22),
which may have no solution, or a whole subspace of solutions. However, it is not strictly
necessary to SOLVE the above equation, but simply to find a nδ that is still a direction of
descent to the original problem. We now show that this may obtained by considering the
Singular Value Decomposition of the jacobian:

T

n

UDV
n
a =

∂
∂

U = (M x N) , V=(N x N) are unitary matrices - M=dim(a), D=(N x N) matrix with (nonzero)
singular values { }),min(1 ,, NMdd L  on the diagonal.
This is an SVD of a matrix which arises from discretising an integral kernel, so since (21) is
closely related to (19), we expect the singular values to decrease to zero: 0→kd  as ∞→k .
This is the manifestation of the ill posed nature of the linearised inverse problem (19). We
therefore choose the step nδ given by:
(23) ( )[ ]naaUVDn 1

T −= −1
redδ

This is just the generalised inverse, with D replaced by Dred    - the matrix D with αmaxddk <  set
to zero for a given regularisation parameter 10 << α .
The effect of the regularisation parameter is to eliminate the singular values that are considered
to be too small, and that therefore lead to large numerical instabilities in the determination of nδ .
This is directly related to regularisation by truncation of singular values of integral operators [5].
Note that this is one of many regularisation techniques that may be used. The other most notable
one being Tikhonov regularisation [5] which would be equivalent to adding a regularisation
factor nαδ on the lhs of (22). The latter would have been the algorithm of choice if for practical
reasons it would be too lengthy to calculate the SVD, which would be the case if M,N were too
large. Conventional wisdom indicates, however, that regularisation by truncation of singular
values is preferable if the singular values are available.
In particular, the solution to (23) still gives a descent direction:
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This is the basic requirement for a convergent root finding algorithm.

9. Numerical experiments using the inverse problem approach.
We use the above regularised descent estimate to implement the following classical search
algorithm:

 For given regularisation parameter 10 << α  and current estimate kn , next step given
by:

( )[ ]kred naaUVDn 1
T −= −1δ

Where U,V Dred are obtained as described above.
Do line search by minimising

( ) ( )
2

nnF k δλλ +−= aa1

and set
nnn kk δλmin1 +=+

Repeat till ( )
2knaa1 − stops decreasing.

At this stage we’re only interested in studying the effectiveness of the search direction, its
behaviour for various values of regularisation parameter, and comparison with performance of
the direct optimisation approach. To this end we have run both the new and the previous
optimisation algorithm for a fixed number of outer iterations (line searches), and have compared
the power coupling 2

1aP = resulting in each case.
The combined results for low and high resolutions are shown in the appendices.
The first significant fact to note is the variation of the solution found with respect to the
regularisation parameter. In both cases (low and high resolution) there clearly seems to an
optimal region for this parameter. This is a familiar result widely documented in inverse problem
literature, and is due to the following reasons:
• If the regularisation parameter is close to 1, only large singular values are retained. These are

the ones that give the smoother contribution to (23), thus resulting in a smoother correction
nδ at each outer iteration. However, as can be seen from the numerical results, the real

solution might well be a highly irregular (non smooth) function. Convergence is therefore
hampered by the poor correction given by the descent step.

• As the regularisation parameter is decreased, the smaller singular values are retained in (23),
thus resulting in a nδ which models better the final solution. However as regularisation
parameter decreases further convergence slows down again due to increased numerical
instabilities resulting in inclusion of excessively small singular values.

The second important point is that given the correct choice for the regularisation parameter, the
algorithm’s convergence rate, although being merely comparable to the classical optimisation
approach for small resolutions (appendix 1), it becomes much better at high resolutions
(appendix 2). This shows that indeed regularisation techniques can be used to accelerate
convergence by filtering out the numerical instabilities associated with high resolutions.

10. conclusions and outlook
As expected, convergence of classical descent algorithms slows down considerably with
increasing refinement of shape discretisation. This initial study indicates that the Inverse
Problem approach is less sensitive to increase in refinement. There is an optimal choice of
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regularisation parameter: trade off between “smoothness” of Newton step (large regularisation
parameter), and numerical instability (small regularisation parameter).
On the whole when large resolutions are used in the discretisation of the original problem, the
algorithm based on the Inverse Problem approach exhibits much faster rates of convergence,
given an appropriate choice of regularisation parameter.
There are of course still open questions.
• In practice a criterion is needed for the “optimal” choice of regularisation parameter at each

Newton step. This is closely related to choosing the optimal regularisation parameter in
solving inverse problems, and several criteria have been established for such a choice, in
particular for linear problems [5]. The main difference is that in an inverse problem the
optimal parameter is a function of the error estimate of the given data, while here it will
depend on other criteria to be established, e.g. the error of the current estimate.

• The technique presented here is very similar in strategy to the one employed for non linear
inverse problems. For the latter, more sophisticated regularisation techniques have been
established which also involve the line search, and not just the search for a local descent
direction [??]. This will provide further gains in computational efficiency.

• The Jacobian 
nn

a
∂
∂ was calculated using finite differences. Although this could not be

avoided for the optimisation algorithm, in the inverse problem approach this can be
approximated using Multidimensional Secant Methods (e.g. Broyden’s Method). This would
result in a dramatic reduction in the computational cost. Again, this is related to methods
used for non linear inverse problems. The approximation needs to be chosen with care, and is
also dependent on the regularization strategy employed [??].
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11. appendix 1: Optimisation using 13 subsections, 10 modes
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12. appendix 2: Optimisation using 48 subsections, 15 modes

Initial shape. 1-P(n) = 0.12150 Optimal shape. 1-P(n) = 0.00466

Convergence is never reached.
 1-P(n)= 0.00466, after 75 line searches.(2900 func evals)
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