Photon Design logoPhoton Design
LinkedIn Contact
FIMMPROP

Bi-directional optical propagation tool

FIMMPROP

Publications

A small sample of our customers' publications using results from FIMMWAVE and FIMMPROP

Publication Authors Link
Dispersion-Diversity Multicore Fiber Signal Processing

Sergi García, Mario Ureña, and Ivana Gasulla ACS Photonics 2022 9 (8), 2850-2859 DOI: 10.1021/acsphotonics.2c00910

https://pubs.acs.org/doi/10.1021/acsphotonics.2c00910
Single-mode sapphire fiber Bragg grating

Mohan Wang, Patrick S. Salter, Frank P. Payne, Adrian Shipley, Stephen M. Morris, Martin J. Booth, and Julian A. J. Fells, "Single-mode sapphire fiber Bragg grating," Opt. Express 30, 15482-15494 (2022)

https://opg.optica.org/DirectPDFAccess/28D1CAEA-4F5A-4DFF-BABAC1928BAC5399_471605/oe-30-9-15482.pdf?da=1&id=471605&seq=0&mobile=no
Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors

Perez-Herrera, R.A., Roldan-Varona, P., Galarza, M. et al. Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors. Sci Rep 11, 9169 (2021). https://doi.org/10.1038/s41598-021-88748-w

https://www.nature.com/articles/s41598-021-88748-w#citeas
Integrated ultra-high-performance graphene optical modulator

Heidari, Elham, Dalir, Hamed, Koushyar, Farzad Mokhtari, Nouri, Behrouz Movahhed, Patil, Chandraman, Miscuglio, Mario, Akinwande, Deji and Sorger, Volker J.. "Integrated ultra-high-performance graphene optical modulator" Nanophotonics, vol. 11, no. 17, 2022, pp. 4011-4016. https://doi.org/10.1515/nanoph-2021-0797

https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0797/html
27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power

Kasper Van Gasse, Ruijun Wang, and Gunther Roelkens, "27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power," Opt. Express 27, 293-302 (2019)

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-27-1-293&id=403523
Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate

Yamaoka, S., Diamantopoulos, NP., Nishi, H. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics 15, 28–35 (2021). https://doi.org/10.1038/s41566-020-00700-y

https://www.nature.com/articles/s41566-020-00700-y#citeas"
Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides

Fuentes, O., Del Villar, I., Corres, J.M. et al. Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Sci Rep 9, 8882 (2019). https://doi.org/10.1038/s41598-019-45285-x

https://www.nature.com/articles/s41598-019-45285-x#citeas
Propagation through cylindrical fiber and photonic crystal fiber devices

Clémence Jollivet, Julie Guer, Peter Hofmann, and Axel Schulzgen, "Monolithic Fiber Lasers Combining Active PCF With Bragg Gratings in Conventional Single-Mode Fibers", IEEE Journal of Selected Topics in Quantum Electronics, 20, 5 (2014)

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6697853
Design of ultralow-loss silicon waveguide crossing using cascaded MMI couplers

Y. Zhang, A. Hosseini, X. Xu, D. Kwong and R. T. Chen, "Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers", Optics Letters, 38, 18, pp. 3608-3611 (2013)

http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-18-3608
Modelling of tapered transition between silicon and ultra-low loss waveguides

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang and J. E. Bowers, "Silicon on ultra-low-loss waveguide photonic integration platform", Optics Express, 21, 1, p. 544-555 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-1-544
Mode solving in high power broad area devices

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers", Semicond. Sci. Technol., 27, 045001 (2012)

http://iopscience.iop.org/0268-1242/27/4/045001
Modelling of a fiber MMI coupler

Peter Hofmann, Arash Mafi, Clémence Jollivet, Tobias Tiess, N. Peyghambarian, and Axel Schülzgen, "Detailed Investigation of Mode-Field Adapters Utilizing Multimode-Interference in Graded Index Fibers," Journal of Lightwave Technology, 30, 14, pp.2289-2298 (2012)

http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&arnumber=6189719
Simulation of propagation and farfield pattern for a 1x3 MMI coupler

A. Hosseini, D. Kwong, Y. Zhang, A. Alu, and R. T. Chen, “Modeling and experimental observation of on-chip two-dimensional far field interference pattern,” Applied Optics, vol. 50, pp. 1822-1826, 2011

http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-50-13-1822
Optimisation of 1x12 silicon MMI couplers

A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, R. T. Chen, “Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane,” Optics Letters, vol. 35, no. 2864-2866, 2010

https://opg.optica.org/ol/abstract.cfm?uri=ol-35-17-2864
Design of a laterally-tapered vertical coupler with FIMMPROP

M. Galarza, D. Van Thourhout, R. Baets, M. Lopez-Amo, "Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration", Optics Express, vol. 16(12), pp. 8350-8358 (2008)

Modelling of an silicon on insulator (SOI) RIB waveguide in a 90 degree bend

Yusheng Qian, Seunghyun Kim, Jiguo Song, Gregory P. Nordin and Jianhua Jiang, "Compact and low loss silicon-on-insulator rib waveguide 90° bend", Optics Express, 14, 13, pp. 6020-6028(2006)

Modelling of a silicon on insulator (SOI) waveguide

Delphine Marris, Eric Cassan, Laurent Vivien, Daniel Pascal, Alain Koster, Suzanne Laval, "Design of modulation-doped SiGe/Si optical modulator integrated in a submicrometer silicon-on-insulator waveguide", Optical Engineering, Vol.44(8), 084001, August 2005

Modelling of a silicon photonic wire waveguide for wavelength conversion

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-Optical Efficient Wavelength Conversion Using Silicon Photonic Wire Waveguide”, IEEE Photonics Technology Letters, Vol.18, No. 9, pp.1046-1048, May 2006

Modelling of hollow core waveguides

Holger Schmidt, Dongliang Yin, John P. Barber, and Aaron R. Hawkins, “Hollow-Core Waveguides and 2-D Waveguide Arrays for Integrated Optics of Gases and Liquids”, IEEE Journal of Selected Topics in Quantum Electronics, V11, No.2, March/April 2005

https://ieeexplore.ieee.org/document/1425491