
Publications
A small sample of our customers' publications using results from FIMMWAVE and FIMMPROP
Publication | Authors | Link |
---|---|---|
Dispersion-Diversity Multicore Fiber Signal Processing
|
Sergi García, Mario Ureña, and Ivana Gasulla ACS Photonics 2022 9 (8), 2850-2859 DOI: 10.1021/acsphotonics.2c00910 |
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00910 |
Single-mode sapphire fiber Bragg grating
|
Mohan Wang, Patrick S. Salter, Frank P. Payne, Adrian Shipley, Stephen M. Morris, Martin J. Booth, and Julian A. J. Fells, "Single-mode sapphire fiber Bragg grating," Opt. Express 30, 15482-15494 (2022) |
https://opg.optica.org/DirectPDFAccess/28D1CAEA-4F5A-4DFF-BABAC1928BAC5399_471605/oe-30-9-15482.pdf?da=1&id=471605&seq=0&mobile=no |
Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors
|
Perez-Herrera, R.A., Roldan-Varona, P., Galarza, M. et al. Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors. Sci Rep 11, 9169 (2021). https://doi.org/10.1038/s41598-021-88748-w |
https://www.nature.com/articles/s41598-021-88748-w#citeas |
Integrated ultra-high-performance graphene optical modulator
|
Heidari, Elham, Dalir, Hamed, Koushyar, Farzad Mokhtari, Nouri, Behrouz Movahhed, Patil, Chandraman, Miscuglio, Mario, Akinwande, Deji and Sorger, Volker J.. "Integrated ultra-high-performance graphene optical modulator" Nanophotonics, vol. 11, no. 17, 2022, pp. 4011-4016. https://doi.org/10.1515/nanoph-2021-0797 |
https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0797/html |
27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power
|
Kasper Van Gasse, Ruijun Wang, and Gunther Roelkens, "27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power," Opt. Express 27, 293-302 (2019) |
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-27-1-293&id=403523 |
Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate
|
Yamaoka, S., Diamantopoulos, NP., Nishi, H. et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics 15, 28–35 (2021). https://doi.org/10.1038/s41566-020-00700-y |
https://www.nature.com/articles/s41566-020-00700-y#citeas" |
Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides
|
Fuentes, O., Del Villar, I., Corres, J.M. et al. Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Sci Rep 9, 8882 (2019). https://doi.org/10.1038/s41598-019-45285-x |
https://www.nature.com/articles/s41598-019-45285-x#citeas |
Propagation through cylindrical fiber and photonic crystal fiber devices
|
Clémence Jollivet, Julie Guer, Peter Hofmann, and Axel Schulzgen, "Monolithic Fiber Lasers Combining Active PCF With Bragg Gratings in Conventional Single-Mode Fibers", IEEE Journal of Selected Topics in Quantum Electronics, 20, 5 (2014) |
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6697853 |
Design of ultralow-loss silicon waveguide crossing using cascaded MMI couplers
|
Y. Zhang, A. Hosseini, X. Xu, D. Kwong and R. T. Chen, "Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers", Optics Letters, 38, 18, pp. 3608-3611 (2013) |
http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-18-3608 |
Modelling of tapered transition between silicon and ultra-low loss waveguides
|
J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang and J. E. Bowers, "Silicon on ultra-low-loss waveguide photonic integration platform", Optics Express, 21, 1, p. 544-555 (2013) |
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-1-544 |
Mode solving in high power broad area devices
|
P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers", Semicond. Sci. Technol., 27, 045001 (2012) |
http://iopscience.iop.org/0268-1242/27/4/045001 |
Modelling of a fiber MMI coupler
|
Peter Hofmann, Arash Mafi, Clémence Jollivet, Tobias Tiess, N. Peyghambarian, and Axel Schülzgen, "Detailed Investigation of Mode-Field Adapters Utilizing Multimode-Interference in Graded Index Fibers," Journal of Lightwave Technology, 30, 14, pp.2289-2298 (2012) |
http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&arnumber=6189719 |
Simulation of propagation and farfield pattern for a 1x3 MMI coupler
|
A. Hosseini, D. Kwong, Y. Zhang, A. Alu, and R. T. Chen, “Modeling and experimental observation of on-chip two-dimensional far field interference pattern,” Applied Optics, vol. 50, pp. 1822-1826, 2011 |
http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-50-13-1822 |
Optimisation of 1x12 silicon MMI couplers
|
A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, R. T. Chen, “Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane,” Optics Letters, vol. 35, no. 2864-2866, 2010 |
https://opg.optica.org/ol/abstract.cfm?uri=ol-35-17-2864 |
Design of a laterally-tapered vertical coupler with FIMMPROP
|
M. Galarza, D. Van Thourhout, R. Baets, M. Lopez-Amo, "Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration", Optics Express, vol. 16(12), pp. 8350-8358 (2008) |
|
Modelling of an silicon on insulator (SOI) RIB waveguide in a 90 degree bend
|
Yusheng Qian, Seunghyun Kim, Jiguo Song, Gregory P. Nordin and Jianhua Jiang, "Compact and low loss silicon-on-insulator rib waveguide 90° bend", Optics Express, 14, 13, pp. 6020-6028(2006) |
|
Modelling of a silicon on insulator (SOI) waveguide
|
Delphine Marris, Eric Cassan, Laurent Vivien, Daniel Pascal, Alain Koster, Suzanne Laval, "Design of modulation-doped SiGe/Si optical modulator integrated in a submicrometer silicon-on-insulator waveguide", Optical Engineering, Vol.44(8), 084001, August 2005 |
|
Modelling of a silicon photonic wire waveguide for wavelength conversion
|
K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-Optical Efficient Wavelength Conversion Using Silicon Photonic Wire Waveguide”, IEEE Photonics Technology Letters, Vol.18, No. 9, pp.1046-1048, May 2006 |
|
Modelling of hollow core waveguides
|
Holger Schmidt, Dongliang Yin, John P. Barber, and Aaron R. Hawkins, “Hollow-Core Waveguides and 2-D Waveguide Arrays for Integrated Optics of Gases and Liquids”, IEEE Journal of Selected Topics in Quantum Electronics, V11, No.2, March/April 2005 |
https://ieeexplore.ieee.org/document/1425491 |